<name> Class: Algebra 2 Date: <date> Topic: Lesson Pre 5.1 (F</date></name>	Properties of Exponents)
Exponent	$a^n \dots n$ is the exponent, # of times the base appears as a factor	
Base	$a^n \dots a$ is the base, the number used as a factor	
<u>Properties of</u> <u>Exponents</u> Product of Powers	$a^m \cdot a^n = a^{m+n}$	$2^3 \cdot 2^2 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^5 = 2^{3+2}$
Power of a Power	$(a^m)^n = a^{m \cdot n}$	$(2^3)^2 = 2^3 \cdot 2^3 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^6 = 2^{3 \cdot 2}$
Power of a Product	$(a \cdot b)^m = a^m b^m$	$(2 \cdot 3)^2 = (2 \cdot 3)(2 \cdot 3) = 2 \cdot 3 \cdot 2 \cdot 3 = 2^2 \cdot 3^2$
Quotient of Powers	$\frac{a^m}{a^n} = a^{m-n}$	$\frac{2^4}{2^2} = \frac{2 \cdot 2 \cdot \cancel{2} \cdot \cancel{2}}{\cancel{2} \cdot \cancel{2}} = \frac{2 \cdot 2}{1} = 2^2 = 2^{4-2}$
Power of Quotient	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$	$\left(\frac{2}{3}\right)^2 = \frac{2}{3} \cdot \frac{2}{3} = \frac{2 \cdot 2}{3 \cdot 3} = \frac{2^2}{3^2}$
Zero Power	$a^0 = 1$	any number raised to the zero'th power is 1
Negative Power	$a^{-m} = \frac{1}{a^m}$	flip any number raised to a negative power
Evaluate Examples	1. $(-4)(-4)^3$	$(-4)(-4)^3 = (-4)^1(-4)^3 = (-4)^{1+3} = (-4)^4 = 256$
	2. $[(-3)^2]^3$	$[(-3)^2]^3 = (-3)^{2 \cdot 3} = (-3)^6 = 729$
	3. $(3^2 x^2 y)^2$	$(3^{2} x^{2} y)^{2} = 3^{2 \cdot 2} x^{2 \cdot 2} y^{1 \cdot 2} = 3^{4} x^{4} y^{2} = 81x^{4} y^{2}$
	4. $5^{-4} \cdot 5^{3}$	$5^{-4} \cdot 5^3 = 5^{-4+3} = 5^{-1} = \frac{1}{5}$
	5. $(2^{-3})^2$	$(2^{-3})^2 = 2^{-3 \cdot 2} = 2^{-6} = \frac{1}{2^6} = \frac{1}{64}$
	$6. m^7 \cdot \frac{1}{m^4}$	$m^7 \cdot \frac{1}{m^4} = \frac{m^7}{m^4} = m^{7-4} = m^3$
	7. $\frac{8^3 \cdot 8^5}{8^9}$	$\frac{8^3 \cdot 8^5}{8^9} = \frac{8^{3+5}}{8^9} = \frac{8^8}{8^9} = 8^{8-9} = 8^{-1} = \frac{1}{8}$

<name> Class: Algebra 2 Date: <date> Topic: Lesson Pre 5.1 (Properties of Exponents)

$$8. \quad \left(\frac{5}{6}\right)^{-3} \qquad \left(\frac{5}{6}\right)^{-3} = \left(\frac{6}{5}\right)^3 = \frac{6^3}{5^3} = \frac{216}{125}$$

$$1. \quad \frac{5x^4y^3}{8x^5} \cdot \frac{3x^3y^5}{6y^4} \qquad \qquad \frac{5x^4y^3}{8x^5} \cdot \frac{3x^3y^5}{6y^4} = \frac{15x^7y^8}{48x^5y^4} = \frac{5}{16}x^{7-5}y^{8-4} = \frac{5x^2y}{16}$$

$$2. \quad \frac{2x^6y^4}{6x^3} \cdot \frac{4x^2y^3}{12y^5} \qquad \qquad \frac{2x^6y^4}{6x^3} \cdot \frac{4x^2y^3}{12y^5} = \frac{8x^8y^7}{72x^3y^5} = \frac{1}{9}x^{8-3}y^{7-5} = \frac{x^5y^2}{9}$$

Simplify Examples